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Abstract
Context: The benefits of programmatic assessment are well-established. Evidence 
from multiple assessment formats is accumulated and triangulated to inform pro-
gression committee decisions. Committees are consistently challenged to ensure 
consistency and fairness in programmatic deliberations. Traditional statistical and 
psychometric techniques are not well-suited to aggregating different assessment 
formats accumulated over time. Some of the strengths of programmatic assessment 
are also vulnerabilities viewed through this lens. While emphasis is often placed on 
data richness and considered input of qualified experts, committees reasonably wish 
for practical, defensible solutions to these challenges.
Methods: We draw upon on existing literature regarding Bayesian Networks (BN), 
noting their utility and application in educational systems. We provide illustrative 
examples of how they could potentially be used in contexts that embed program-
matic principles. We show a simple BN for a knowledge domain before presenting a 
full-scale ‘proof of concept’ BN to support committee decisions. We zoom in on one 
‘node’ to demonstrate the capacity of incorporating disparate evidence throughout 
the network.
Conclusions: Bayesian Networks offer an approach that is theoretically well-sup-
ported for programmatic assessment. They can aid committees in managing evidence 
accumulation, help them make inferences under conditions of uncertainty, and but-
tress decisions by adding a layer of defensibility to the process. They are a pragmatic 
tool adding value to the programmatic space by applying a complementary statistical 
framework. We see four major benefits of BNs in programmatic assessment: BNs 
allow for visual capturing of evidentiary arguments by committees during decision-
making; ‘recommendations’ from probabilistic pathways can be used by committees 
to confirm their qualitative judgments; BNs can ensure precedents are maintained 
and consistency occurs over time; and the imperative to capture data richness is 
maintained without resorting to questionable methodological strategies such as add-
ing qualitatively different things together. Further research into their feasibility and 
robustness in practice is warranted.
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1  | INTRODUC TION

The benefits of taking a programmatic approach to assessment 
are now well-established in the medical education literature.1-4 
Increasingly, medical schools and specialist training colleges use pro-
grammatic principles as part of their assessment frameworks. One 
core principle of programmatic assessment is that decision-mak-
ing regarding student progression or promotion is offset from sin-
gle assessment moments, which are treated as single data points. 
Information is aggregated about given domains of content or specific 
competencies from disparate assessment events, and the informa-
tion is reviewed in combination rather than in isolation. Evidence 
from multiple forms of assessment is accumulated and triangulated 
to inform committee or progression panel decision-making. These 
committees use the accumulated assessment information (which 
must remain nuanced, rich and meaningful) to inform their delibera-
tions and ensure that progression decisions are made with reference 
to a substantive evidence base.

Assessment committees are consistently challenged to en-
sure consistency and fairness in programmatic deliberations. 
Indeed, it is the operationalisation of programmatic assessment, 
and specifically the element of decision-making that requires fur-
ther research. There is a dearth of research on this topic to date.5 
Although the arsenal of statistical and psychometric techniques 
for quality assuring traditional assessment formats in medical ed-
ucation is well-established,6 these tools are not well-suited to ag-
gregating different forms of assessment accumulated over time. 
Some of the above strengths of programmatic assessment can 
also be considered as its vulnerabilities when viewed through a 
lens of reliability and reproducibility. While we acknowledge this 
re-introduces a post-positivist lens on the problem, we argue that 
this is an important lens that has been overlooked. After all, one 
of the drivers of the programmatic model was an argument based 
on reliability and sampling. Fairness and consistency in assessment 
remain an important driver of assessment research and innova-
tions in practice, and it is important that the drive does not result 
in pre-psychometric mindsets.7,8

From this psychometric perspective, there are multiple vul-
nerabilities in operationalising a programmatic approach. First, 
programmatic approaches promote the aggregation of infor-
mation about a given domain of content (eg anatomy) or about 
a specific competency (eg diagnosis) from disparate assessment 
events. Proponents argue for the meaningful triangulation of rich, 
nuanced information,9 but this can be difficult to execute in prac-
tice. For example, there are issues with how to triangulate differ-
ent formats of information where sources of data are captured in 
different contexts: such as narrative feedback from supervisors 
in clinical contexts10; enstrustability ratings from work-based as-
sessments11; and sources of information from higher-stakes as-
sessment tasks (such as traditional hurdle examinations). These 
sources of evidence cannot readily be added together, yet a pro-
grammatic approach encourages them to be considered in com-
bination rather than in isolation. While traditional test theory 

models provide a useful framework for constructing and quality 
assuring specific measures within an assessment program, they 
do not directly address the problem of aggregating conceptually 
distinct measures. The problem of how best to combine scores 
from different assessments is well-known but relatively un-
der-researched,12 with various reliability, validity and error rate 
trade-offs arising from different combinations of arithmetic and 
logical rules.13 Specific shortcomings, such as where weighted 
sum scores across multiple measures might lead to different de-
cisions being made for equally capable trainees, or vice versa, be-
come more likely with overly simplistic aggregation approaches. 
Even less commonplace is research into approaches for combin-
ing assessment scores with more qualitative, categorical assess-
ment information in a decision-making context, such as might 
arise in programmatic assessment systems. At certain points in 
time during a training program, binary decisions pertaining to pro-
gression are required. These binary decisions in a programmatic 
paradigm involve aggregation of a variety of disparate sources of 
evidence across multiple domains or competencies.

As a second specific challenge, in programmatic assessment, 
there is an assumption of continuous learning, intentionally sup-
ported by more frequent, diagnostic and meaningful feedback.14,15 
This temporal dimension to the development of multiple competen-
cies may complicate attempts to use traditional test theory models 
to support making inferences, particularly in the context of multi-
farious assessment evidence. Although numerous longitudinal psy-
chometric approaches are available, these models may not have 
the flexibility to simultaneously address the evidence accumulation 
challenge described in the previous paragraph. The feasibility of 
these models requires further evaluation. These challenges highlight 
the need for sufficiently flexible yet robust statistical frameworks in 
a programmatic assessment context.

The challenges above are not unheard of in other assessment 
contexts.16 In educational assessment specific to medical education, 
these challenges have already been echoed by Schuwirth and van 
der Vleuten in a plea for new, conceptually different psychometric 
models.17 In response to these challenges, committees reasonably 
wish for practical, defensible solutions to ensuring consistency and 
fairness. This is where numerous tensions arise. The programmatic 
approach champions the richness of the data and the considered 
input of suitably qualified committees of experts to marshal these 
data into an evidentiary argument about whether the trainee is 
ready to progress. With this kind of approach, it is difficult to ensure 
that consistent judgements are being made both within a cohort and 
over time. A further threat may arise as the composition of commit-
tees naturally changes over time. To address this issue, we explore 
the potential for utilising Bayesian Networks (BNs) as a pragmatic 
tool to inform programmatic deliberations and buttress committee 
decisions.

Bayesian Networks are probabilistic graphical models which 
provide a visual and statistical framework for reasoning under un-
certainty.18 They have been applied over several decades in dis-
ciplines including medicine,19 agriculture,20 finance,21 ecology22 
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and information technology,23 where they have fulfilled numerous 
functions including diagnosis, prediction, classification and deci-
sion-making. BNs are widely used because they enable flexible and 
intuitive modelling of uncertainty and complexity in almost any re-
al-world system where alternative statistical models or rule-based 
algorithms prove inadequate or intractable.24 Culbertson25 provides 
a recent summary of their application in educational assessment 
contexts, and notes that, despite their flexibility, BNs have garnered 
relatively little attention from psychometricians to date. Although 
Schuwirth and van der Vleuten actually foreshadowed probabilistic 
and Bayesian statistical approaches to medical education assess-
ment in their seminal 2006 paper,17 we are not aware of the use of 
BNs to support implementation of a programmatic approach to as-
sessment in medical education. We contend that BNs are well-suited 
to accommodating the diversity of evidence under consideration in a 
programmatic approach, and that they have the potential to address 
a glaring gap in credible methods to consistently and defensibly ag-
gregate this evidence.

The purpose of this paper is to introduce the concept of BNs 
and to provide some illustrative examples of how they could poten-
tially be used in medical education assessment contexts that embed 
programmatic principles. Research into validity frameworks for BNs 
is limited in educational contexts26 and more work in this area is 
warranted, although this is not our focus in this paper. Instead, we 
outline how BNs can be used as heuristics that can add value to the 
benefits that come with thinking programmatically, while also draw-
ing upon BNs as a way of overcoming some of the vulnerabilities of 
a programmatic approach. We argue that BNs can re-introduce an 
element of fairness and consistency, dealing statistically with data 
that is collected temporally and from disparate sources. BNs can aid 
committees with managing the accumulation of evidence, helping 
make inferences under conditions of uncertainty, and in buttressing 
decisions by way of adding a layer of defensibility. After providing a 
brief background to BNs, we proceed by way of providing some illus-
trative specific examples of how BNs can work in medical education 
contexts, emphasising their utility.

2  | BAYESIAN NET WORKS: A PR AC TIC AL 
SOLUTION FOR RE A SONING UNDER 
UNCERTAINT Y

A BN is defined as a directed acyclic graph, meaning it consists of 
a number of nodes that represent random variables. These nodes 
are connected by edges or arcs which are represented as arrows. 
The direction of these arrows is commonly specified to indicate 
the direction of causality. Each node has an underlying conditional 
probability table or function that specifies how the probability 
of each possible state within that node (a so-called child node) 
depends on its so-called parent nodes (connections are directed 
from parent nodes to child nodes in a BN). The lack of a direct 
connection between two nodes represents conditional independ-
ence assumptions. A sparse set of edges can result in a compact 

representation of the joint probability distribution for a system 
that is intuitive to work with and that is computationally tractable. 
We provide illustrative examples of the probability theory under-
pinning BNs in the following section.

Much like in classical and modern test theory models, both ob-
served and latent variables can be specified in a BN. For example, la-
tent variables representing attributes of interest can be specified as 
parent nodes, and observations from assessment tasks can be spec-
ified as child nodes that are ‘caused by’ the parent nodes. Although 
the assumptions in many measurement models are too strict to work 
with a programmatic approach, BNs are a flexible statistical model 
that can accommodate complex relationships between variables, 
and are thus more applicable for programmatic approaches that em-
brace the sampling of diverse evidence at different points in time to 
appraise the development of competence.

2.1 | Simple BN for a knowledge domain in 
medical education

To make this theoretical introduction and the flexibilities of BNs 
more concrete, it is instructive to first explore a relatively simple 
BN showing the structure of the graph and the corresponding con-
ditional probability tables underpinning it. The structures of the 
BNs demonstrated in this article have been specified using expert 
judgement and built using the Netica software package.27 We begin 
by showing a simple BN for the Pathology knowledge domain in 
Figure 1. The adequacy of a trainee's Pathology knowledge is speci-
fied as a latent variable with two categories: adequate and inade-
quate. There are three pieces of observable assessment evidence 
including outcomes from the relevant components of a multiple-
choice and a short-answer question examination, and a rating from 
a work-based assessment focusing on Pathology knowledge. The 
evidence in this example is of two different kinds, with examination 
score performance categories (though examination scores could be 
used) in addition to a more qualitative rating derived from a work-
based assessment. We note here that a BN does not preclude the 
simultaneous use of particular assessment methods or test theory 
models within a programmatic system, for example using Item 
Response Theory to scale and equate examinations.

A BN allows disparate assessment information to be incorpo-
rated without resorting to methodologically questionable strate-
gies such as adding qualitatively different things together.28 These 
observable variables are modelled as being dependent on the la-
tent Pathology knowledge variable and conditionally independent 
of each other. The structure of a BN can be specified by domain 
experts or, in some cases, it can be learned from a database using 
appropriate software. BNs can be employed either as confirma-
tory or exploratory tools.

Much like the structure of a BN, the conditional probabilities 
that underpin the network can be determined in different ways. 
They can be determined via theory or expert judgement, they can 
be learned from available assessment data (ie a database), or they 
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can be continually refined using a combination of these approaches 
(for instance being updated as new data become available).29 To pro-
duce the BN shown in Figure  1, expert judgement was applied to 
initially specify the network structure and to subsequently specify 
the conditional probabilities. First, we specified prior probabilities 
for the parent node (Pathology knowledge), where we specified an 
80% likelihood that a trainee for whom no assessment evidence was 
yet available would have ‘Adequate’ Pathology knowledge. Second, 
we specified conditional probabilities for each of the child nodes. 
For example, the conditional probabilities that we specified for the 
WBA (Work-based assessment) Pathology Rating node are shown in 
Table 1.26 These probabilities represent the likelihoods of the WBA 
Pathology Rating being observed in each of the possible states of 
‘High’, ‘Acceptable’, ‘Low’ or ‘Unacceptable’ given that a trainee has 
an assumed level of ‘Pathology knowledge’ that is either ‘Adequate’ 
or ‘Inadequate’ in turn. In this example, we specified that a trainee 
with ‘Adequate’ Pathology knowledge would have a 40% likelihood 
or 0.40 probability of having an observed rating of ‘High’ on this par-
ticular WBA and only a 2% likelihood of having an observed rating of 
‘Unacceptable’, and so on.

Once these probabilities have been specified, the BN can be in-
stantiated. This results in the prior probabilities being calculated for 
each of the categories within each child node in the network. This 
calculation step applies the law of total probability and is completed 
automatically by BN software packages. For example, the value of 
32.4% in Figure 1 for a WBA rating of ‘High’ is calculated by summing 
over the product of each Pathology Knowledge (PK) category prob-
ability with the conditional probability of a ‘High’ WBA rating given 
that PK category. This is shown in Equation 1.

Figure  2 illustrates an important concept. As observations are 
entered into a BN, a process referred to as ‘belief propagation’ oc-
curs. In this process, the probabilities of other nodes in the network 
are updated to reflect the current belief about the most likely state 
of the system. More technically, this process updates the posterior 
probability distribution of variables in the network. In this example, 
our prior belief about a trainee for whom we have no assessment 
information is that there is 80% likelihood that they have adequate 
knowledge of pathology. After one unfavourable observation on 
the WBA, our belief that their knowledge is adequate reduces to 
41.6% likelihood. This calculation, which is an application of Bayes’ 
Theorem, is shown in Equation 2.

The belief propagation process then updates the likelihoods in 
all other nodes for which an observation has not yet been recorded. 
This process again applies the law of total probability, but now uses 
the updated likelihood of ‘Adequate’ Pathology knowledge of 41.6% 
as opposed to the 80% value that was used in Equation 1. Readers in-
terested in further technical details beyond those covered in this ar-
ticle are encouraged to refer to Pearl's seminal text18 or Charniak.30

(1)

∑

PK

P[WBA=�High�] = (P[WBA=�High�|PK=�Adequate�]×P[PK=�Adequate�])

+(P[WBA=�High�|PK=� Inadequate�]×P[PK=� Inadequate�])
∑

PK

P
[
WBA=�High�

]
=(0.4×0.8)+(0.02×0.2)=0.324

(2)

P[PK=�Adequate�|WBA=� Low�]=
P[WBA=� Low�|PK=�Adequate�]×P[PK=�Adequate�]

P[WBA=� Low�]

P[PK=�Adequate�|WBA=� Low�]=
0.08×0.80

0.154
=0.416

F I G U R E  1   Simple BN for inferring Pathology domain knowledge from three assessments

Pathology knowledge High Acceptable Low Unacceptable

Adequate 0.40 0.50 0.08 0.02

Inadequate 0.02 0.08 0.45 0.45

TA B L E  1   Conditional probabilities 
for the WBA Pathology Rating node 
given each possible state of Pathology 
knowledge
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As more observations are entered into a BN, the uncertainty around 
the most likely state of the trainee's pathology knowledge reduces. 
This is analogous to score reliability increasing with increased sam-
pling of questions or cases and can provide insight into the incremental 
value of additional observations in the decision-making process. This 
also provides an opportunity for experts to review the extent to which 
the reasoning captured in the BN and the relative weight given to in-
dividual observations accords with their expectations. This process of 
BN evaluation and refinement can be undertaken both qualitatively 
and via formal statistical model criticism techniques.31

An important feature of the first example BN shown in Figure 1 
and Figure 2 is that it can be treated as what is known as a BN frag-
ment. This means that this small BN can be combined with other BN 
fragments, for example analogous fragments for anatomy and phys-
iology, thus providing a full BN that could be applied in the context 
of progression decisions relating to basic sciences. This extensibility is 
illustrated in Figure 3, which shows a BN for a decision-making point 

in specialty training progression. The binary decision is whether the 
trainee is safe to progress to the next phase of clinical training. The 
committee must take into account the trainee's performance in three 
knowledge domains (pathology, physiology and anatomy), each of 
which is comprised of assessment information from different formats 
(both examination components and WBA ratings).

3  | A SSEMBLING BNS TO ADDRESS 
CHALLENGES IN PROGR AMMATIC 
A SSESSMENT

Now that several of the main building blocks of BNs have been pre-
sented, it is worth briefly summarising how these can be potentially 
assembled to address situations and challenges that may arise in a 
programmatic approach to assessment. The following provides an 
explanation of BN affordances that are aligned to characteristics 

F I G U R E  2   Simple BN with one observation instantiated showing belief propagation through the network

F I G U R E  3   Possible BN for an overall progression decision relating to knowledge of three basic sciences domains
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of a programmatic approach: multidimensional skills and attributes; 
complex dependencies between skills, attributes and evidence; inter-
dependencies between multiple scores or judgements derived from 
the same task; missing observations; and learning or improvement 
over time.

A BN approach is well-suited to dealing with the need to consider 
data from multiple sources. Programmatic approaches to assessment 
generally aim to consider a breadth and diversity of knowledge, skills 
and attributes, such as those described in the CanMEDs framework. 
This breadth and diversity implies that the accompanying program of 
assessment and associated processes ought to be conceptualised as 
multidimensional, with, from a measurement perspective, multiple 
latent variables under consideration simultaneously. The examples 
so far show that this is readily accommodated in BNs, with incorpo-
ration of multiple parent nodes, and optionally with dependencies 
between parent nodes specified too.

Bayesian Networks can deal with complex dependencies be-
tween skills, attributes and evidence. Programmatic committees 
must account for multiple, disparate attributes and observations 
with the additional challenge of properly capturing the nature of the 
relationships between these variables. Furthermore, there may be 
a requirement to impose certain policies that dictate hard rules or 
deterministic relationships between these variables. Fortunately, 
BNs provide considerable flexibility in these respects. For example, 
Almond32 explains that the relationship between variables and their 
influence on assessment observations can be modelled as conjunc-
tive, disjunctive or compensatory, among other possibilities. Finally, 
it is possible to fix certain probabilities in the conditional probability 
tables to be zero or one,18 meaning that a deterministic rule or policy 
can be instituted in the BN (eg if a candidate fails a specific task, then 
they cannot progress).

BNs can handle inter-dependencies between multiple scores or 
judgements derived from the same task. In assessment situations 
where a single task or stimulus contributes multiple observations 
about a trainee, it is important to consider whether strong depen-
dencies between the observations have been introduced. In such 

cases, it may not be appropriate to count each observation sepa-
rately towards a final score or outcome as if each contributed inde-
pendent information about the attributes being assessed. Instead, 
the shared variation in scores across the observations should be 
accounted for.33 Like several other test theory models, these depen-
dencies can be explicitly modelled in a BN.34

Missing data or assessment evidence that has gaps (due to trainee 
rotations, for example) can be managed by BNs. This is because BNs 
do not require complete data in order to support the probabilistic 
inference processes described so far. This is an attractive feature in 
that the current belief about a trainee's proficiencies and attributes 
can be updated progressively and in real-time as new assessment 
information becomes available. Also, for programs looking to learn 
conditional probabilities from historical data, parameter estimation 
processes that can accommodate missing data are available in most 
if not all popular BN software tools.

Finally, BNs can effectively track learning progressions over 
time. BNs afford the possibility of making inferences about the same 
collection of skills and attributes at separate points in time in a med-
ical education program (eg years or stages). Versions of BNs that are 
sometimes referred to as Dynamic Bayes Nets (DBNs) (and the pro-
cess of Bayesian Knowledge Tracing (BKT) more generally) are prom-
inent in the Intelligent Tutoring System (ITS) and Learning Analytics 
research communities.35 While we do not present an example of a 
DBN or BKT in this paper, we note their potential applicability for 
training programs that may seek to explicitly model changes in skills 
and attributes over time.36

3.1 | BNs to support decision-making in a 
programmatic system

Figure 4 presents a full-scale BN model for a programmatic assess-
ment system as a proof of concept. A high-stakes decision—in this 
example, progression to Fellowship in a specialty training program—
is made based on a constellation of evidentiary information from 

F I G U R E  4   Possible BN for an overall fellowship progression decision in a programmatic assessment system



     |  7ZOANETTI and PEARCE

disparate sources across the spectrum of assessment approaches. 
How might BNs support progression committees in their decision-
making in such truly programmatic contexts?

The progression committee reviews assessment information and 
makes a series of informed, collective judgments about the trainee. 
These judgments are resolved into different categorical scales, de-
pending on the assessment. In this example, Work-based assessment 
tasks and research components use an ‘acceptability scale’; EPAs 
use an ‘entrustability scale’ relating to the amount of supervision 
required; the Logbook uses a scale relating to progress; and the ex-
amination components are resolved into broad performance level 
ratings. The committee needs to make a series of judgments about 
whether the trainee's learning, at this point in time, has reached the 
appropriate level to grant fellowship status.

Blueprinting and constructive alignment principles ensure 
that each assessment moment is aligned to one of the CanMEDs 
competencies, either Medical Expert or the six ‘Intrinsic Roles’. In 
this example, Medical Expert is broken down further into ‘Core 
Knowledge’, ‘Clinical Understanding’ and ‘Skills and Procedures’. 
These domains along with the six Intrinsic Roles allow for nine 
overall categorisations of performance. The final decision for the 
committee is a binary one—does this trainee meet the require-
ments for progression to fellowship? This process is a typical one 
followed in programmatic assessment committees. The devel-
opment of a BN to visually capture this process can occur inde-
pendently. Thus, the BN can become a powerful statistical tool 
based on a probabilistic framework to confirm whether the final 
judgment by the committee is consistent with precedent and miti-
gate against potential bias.

3.2 | Incorporating rich evidence into nodes

None of the judgments above remove the detailed or ‘rich’ informa-
tion that may have been collected—WBAs might be populated with 
detailed narrative comments; Multi-Source Feedback (MSF) may 
have specific and nuanced information that a trainee used to inform 
their learning. This more nuanced information can actually be incor-
porated into the BN nodes, coded as a qualitative judgment based on 
a rubric, without the need for potentially arbitrary numerical opera-
tions. The raw data can be maintained separately in its more mean-
ingful format for review by the committee if required. The more 
detailed ‘fragment’ in Figure 5 can be added to the full programmatic 
network in Figure 4 and feed into the final progression decision.

4  | DISCUSSION: BENEFITS OF UTILISING 
BNS A S A HEURISTIC TOOL

The methodological gap we are addressing is the current lack of 
theoretically appropriate statistical methods for accumulating 
different observations and measures to support decision-making 
in programmatic assessment systems. Bayesian Networks are 
theoretically well-suited to support this process of substantive 
reasoning under conditions of uncertainty. The examples shown 
are all ‘proof of concept’—other instantiations of networks could 
be readily developed for different medical education assessment 
contexts with particular specificities and idiosyncrasies. However, 
we argue that BNs have immense potential in the programmatic 
space as they add a complementary probabilistic framework (one 

F I G U R E  5   Possible BN drilling down on MSF ratings
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even foreshadowed by Schuwirth and van der Vleuten)17 for guid-
ing or reviewing committee decisions. There is the matter that 
some medical education programs attract small candidatures, 
and therefore, the feasibility of BNs needs to be proven in pro-
grams that differ in size and other respects. This is a limitation 
worth considering. Similarly, we see a need for further research 
into the feasibility and robustness of BNs specified with differ-
ent types of latent variables, at different levels of granularity, and 
incorporating observations that are of different levels of quality. 
Nevertheless, we see four major potential benefits of BNs in pro-
grammatic assessment.

First, BNs allow for the visual capturing of evidentiary argu-
ments in decision-making processes. That is, at their very simplest, 
a BN allows for the recording of committee decisions in context. 
Programmatic committees must marshal a vast array of disparate 
forms of evidence of trainee progression. BNs articulate the inter-
connectivity of assessments across time, explicitly show the rela-
tionships between certain assessment moments and framework 
components (such as competencies), and visually demonstrate how 
decisions propagate and impact on final progression decisions. In one 
trial instantiation with a specialist medical college, we triangulated 
assessment data across assessment formats and aggregated by cur-
riculum modules and proficiency domains. In the candidate review 
process, the decision to award/not award fellowship incorporated 
rich evidence across assessment formats via detailed interrogation 
of performance. A BN was built to visually capture the process and 
highlight transparency of decisions.

Second, committees can confirm their qualitative judgments 
against quantitative ‘recommendations’ from the probabilistic 
pathways that emerge from the BN. BNs provide not only a record 
of the evidentiary trail that led to final decisions; BNs can be fed 
with real data over time. Data from previous committee reviews 
can be fed in, allowing for probability calculations to emerge re-
garding the likelihood of Pass/Fail outcomes based on multiple 
decision-making points. The BN is thus a form of an ‘expert sys-
tem’ that recommends a final outcome. This does not imply that 
BNs should become a type of ‘black box’ or artificial intelligence 
machine that replaces the process of committee decision-making. 
Instead, we see the BN as another tool in the arsenal of evidence 
available to the panel to add a layer of defensibility to the pro-
cess. Transparency regarding how the BN is built, and justifica-
tion in how it is employed remains crucial. Here, we echo the call 
for the judicious use of psychometric information in assessment 
(rather than the blind acceptance of it), and comprising part of an 
evidentiary framework.8 Further, as there are established statis-
tical techniques37 available for evaluating and refining BNs based 
on real data, there is scope for critiquing the quality of assessment 
evidence included in each node; reviewing the reasonableness of 
conditional independence assumptions in the network structure; 
checking the stability of the network structure and conditional 
probabilities over time; and, for validating and continually improv-
ing a programmatic system using BNs. Such evaluative information 

will feed back into the whole assessment approach and ultimately 
enhance the decision-making process over time.

Third, BNs can be used to ensure that precedents are main-
tained. In other words, the same constellation of evidence would 
lead to the same decision, either for different trainees or at differ-
ent points in time. Consistency of decisions over time is a major 
vulnerability of the programmatic approach, with potential for bias 
from committee members and even changing committee member-
ship over time. Does the BN recommendation align with the deci-
sion of this committee? If yes, then a further check that precedent 
is being maintained and consistency (in the form of fairness to 
trainees) is occurring over time. If no, then something may have 
gone awry somewhere in the process and further interrogation of 
the data by the committee is warranted before finalising a deci-
sion. The way these processes flow will depend on context-spe-
cific guidelines for decision-making relating to the alignment of 
the BN outcomes.

Fourth, BNs avoid artificial and arbitrary assignment of numbers 
to ratings so that data can be more easily aggregated from disparate 
sources. Instead, different qualitative judgments from different rat-
ing scales can be coded according to a rubric, while still being main-
tained in a pure form elsewhere. Such coding of nodes can retain 
qualitatively distinct categories that reflect granular performance 
categories and do not require reducing the rich information from dif-
ferent assessment strategies to numbers. This is particularly relevant 
for programs that are collecting large volumes of assessment evi-
dence across years (such as residency programs in the United States). 
If data collection is centralised across specialities, the burden of data 
accumulation is effectively managed by the BN and potentially dis-
tilled in a way that is helpful to educators. Using BNs maintains the 
imperative in programmatic assessment to capture the richness of 
the data and, more importantly, the decision-making points that are 
enacted by committees.

5  | CONCLUSION

There are multiple potential benefits of utilising BNs as a pragmatic 
tool where programmatic assessment is implemented. We have 
drawn upon BNs as a means for overcoming several of the per-
ceived vulnerabilities in implementing a programmatic approach 
to assessment. BNs are able to deal statistically with disparate 
forms of data collected over time. And yet BNs do not reduce the 
rich information from different assessment strategies to numbers. 
Instead, they retain much of the richness of the data and, more im-
portantly, the decision-making points that are enacted by commit-
tees. Evidentiary arguments for final Pass/Fail decisions are visually 
captured; panels can confirm their qualitative judgments against 
quantitative ‘recommendations’ from the probabilistic pathways; 
precedents from previous years can be maintained, ensuring fair-
ness to cohorts of trainees; and the artificial and arbitrary assign-
ment of numbers or weightings to assessment data is avoided.
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Although BNs offer an approach that is theoretically well-
supported for programmatic assessment, further research into their 
feasibility and robustness in practice is warranted. Many questions 
emerge from thinking about their application to programmatic as-
sessment. For instance: How much data is needed to reach saturation 
to make BNs useful? How much trialling across cohorts is required 
before the approach is defensible? How are repeated measurements 
and change over time optimally modelled using BNs or DBNs? What 
is the impact of curricular or assessment changes on accumulated 
data sets? We call for specific research in programmatic assessment 
contexts on these, and other, operational issues. Prior to full-scale 
studies, simulation-based research approaches may be particularly 
useful.

Overall, BNs have the potential to become a powerful tool to add 
a layer of defensibility to the process of decision-making in program-
matic assessment. Systematic approaches to ensuring consistency, 
transparency, fairness and ultimately, defensibility of decision-mak-
ing in programmatic assessment can be readily applied. Although 
further research into their feasibility is required, BNs have the po-
tential to aid programmatic assessment committees with managing 
the accumulation of evidence, supporting the process of making 
inferences under conditions of uncertainty, and in enhancing the 
robustness of a programmatic approach to assessment in medical 
education.
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